Abstract
Network Intrusion Detection Systems (NIDSs) are an increasingly important tool for the prevention and mitigation of cyber attacks. Over the past years, a lot of research efforts have aimed at leveraging the increasingly powerful models of Machine Learning (ML) for this purpose. A number of labelled synthetic datasets have been generated and made publicly available by researchers, and they have become the benchmarks via which new ML-based NIDS classifiers are being evaluated. Recently published results show excellent classification performance with these datasets, increasingly approaching 100 percent performance across key evaluation metrics such as Accuracy, F1 score, AUC, etc. Unfortunately, we have not yet seen these excellent academic research results translated into practical NIDS systems with such near-perfect performance. This motivated our research presented in this paper, where we analyse the statistical properties of the benign traffic in three of the more recent and relevant NIDS datasets, (CIC_IDS, UNSW_NB15, TON_IOT), by converting them into a common flow format. As a comparison, we consider two datasets obtained from real-world production networks, one from a university network and one from a medium size Internet Service Provider (ISP). Our results show that the two real-world datasets are quite similar among themselves in regards to most of the considered statistical features. Equally, the three synthetic datasets are also relatively similar within their group. However, and most importantly, our results show a distinct difference of most of the considered statistical features between the three synthetic datasets and the two real-world datasets. Since ML relies on the basic assumption of training and test datasets being sampled from the same distribution, this raises the question of how well the performance results of ML-classifiers trained on the considered synthetic datasets can translate and generalise to real-world networks. We believe this is an interesting and relevant question which provides motivation for further research in this space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.