Co-containing molecular sieves, mainly Co–faujasite zeolite and Co-MCM-41, have been studied for the epoxidation of styrene with molecular oxygen. Characterizations with XRD, TEM, laser-Raman, XPS, and H 2-TPR suggest that the cobalt introduced into MCM-41 by a template-ion exchange method resembles that exchanged in the faujasite zeolite and exists in the single-site Co(II) state, whereas the sample prepared by the impregnation method contains a large proportion of Co 3O 4. The Co(II) sites located in the molecular sieves catalyze the epoxidation of styrene by oxygen with higher activity than Co 3O 4 (ca. 2.6 times based on the same cobalt amount). On the other hand, in homogeneous reactions, Co(NO 3) 2 and Co(Ac) 2 are almost inactive for the conversion of styrene with oxygen, whereas CoCl 2 and Co(acac) 3 show some activity, but the selectivity for epoxide is remarkably lower as compared with the Co(II)-containing molecular sieves. Among various oxidants examined, oxygen is found to be the best one for the epoxidation of styrene over the Co(II)-containing molecular sieve catalysts. The solvent plays an important role in epoxidation, and superior catalytic performances have been obtained with an acylamide such as N,N-dimethylformamide (DMF) as the solvent. The oxygen species with a radical nature generated by the activation of molecular oxygen over the solvent-coordinated Co(II) site has been proposed for the epoxidation reactions.