AbstractThe priming effects (PEs) of soil organic carbon (SOC) decomposition is a crucial process affecting the C balance of terrestrial ecosystems. However, there is uncertainty about how PEs will respond to climate warming. In this study, we sampled soils along a subtropical elevation gradient in China and conducted a 126‐day lab‐incubation experiment with and without the addition of 13C‐labeled high‐bioavailability glucose or low‐bioavailability lignin. Based on the mean annual temperature (MAT) of each elevation (9.3–16.4°C), a temperature increase of 4°C was used to explore how PEs mediate the decomposition of SOC in response to warming. Our results showed that the magnitude of glucose‐induced PEs (PEglucose) was higher than lignin‐induced PEs (PElignin), with both PEs linearly increasing with MAT. Across the MAT (i.e., elevation) gradient, short‐term warming had a constant magnitude of negative effects on PEglucose, whereas rising MAT exacerbated the negative effects of short‐term warming on PElignin. Moreover, the temperature sensitivity of SOC decomposition decreased after adding glucose and lignin across the MAT gradient, suggesting that fresh C inputs may prime the microbial breakdown of labile SOC under warming. Taken together, warming alleviated SOC loss due to PEs through varying mechanisms depending on substrate bioavailability. Warming mediated the PEglucose by increasing available nitrogen and weakening microbial nitrogen‐mining but inhibited the PElignin by shifting from microbial nitrogen‐mining to microbial co‐metabolization. Our findings highlight the role of warming in regulating the PEs and suggest that incorporating the suppression effect of warming on PEs can contribute to the accurate prediction of soil C dynamics in a warming world.
Read full abstract