Lantibiotic bovicin HJ50 is produced by Streptococcus bovis HJ50 and acts as the extracellular signal to autoregulate its own biosynthesis through BovK/R two-component system. Bovicin HJ50 shows a linear N-terminal and glubolar C-terminal structure, and the sensor histidine kinase BovK contains eight transmembrane segments lacking any extensive surface-exposed sensory domain. The signal recognition mechanism between bovicin HJ50 and BovK is still unknown. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on bovicin HJ50 using a semi-in vitro biosynthesis. Results of the mutants inducing activities indicated that several charged and hydrophobic amino acids in ring B of bovicin HJ50, as well as two glycines were key residues to recognize BovK. Circular dichroism analyses indicated that both glycines contributed to bovicin HJ50 structural changes in the membrane. Biotin-labeled bovicin HJ50 could interact with the N-terminal sensor of BovK, and several charged residues and a conserved hydrophobic region in the N-terminal portion of BovK sensor domain were important for interacting with the signal bovicin HJ50. By combining the results, we suggested a mechanism of bovicin HJ50 recognizing and activating BovK mainly through electrostatic and hydrophobic interactions.