Cold tolerance is a key determinant of poleward colonization in insects. However, the physiological basis underlying interspecific differences in cold tolerance is not fully understood. Here, we analyzed cold tolerance and metabolomic profiles in warm- and cold-acclimated phenotypes of 43 Drosophila species representing a latitudinal gradient from the tropics to the boreal zone. We found a strong positive correlation between cold tolerance and climatic variables associated with habitat seasonality and temperature. Including the effects of cold acclimation, we found most species to have similar 'safety margins', measured as the difference between the average environmental temperature and the lower lethal temperature. Searching for metabolomic signatures of cold tolerance, we found that the warm-acclimated flies of cold-hardy species had moderately but significantly higher constitutive signals of putative cryoprotectants such as trehalose, glucose, glycerol, and mannitol/sorbitol. Cold acclimation (and the transition to winter dormant phenotype) resulted in a strong accumulation of myo-inositol, which occurred only in species of the virilis group. Other temperate and boreal species either showed only moderate, idiosyncratic accumulations of sugars/polyols and free amino acids, or did not accumulate any 'classical' cryoprotectant at all. Thus, our results suggest that the colonization of boreal regions by Drosophila does not necessarily depend on the seasonal accumulation of classical cryoprotectants. In contrast, virtually all cold-acclimated species showed a significant increase in products of phospholipid catabolism, suggesting that remodeling of biological membranes is a clear and ubiquitous signature of cold acclimation in Drosophila.
Read full abstract