In the present study, tribological and corrosion behaviour of electroless Ni–B–W (ENB-W) coatings prepared from stabilizer-free baths and deposited on AISI 1040 steel substrates were examined. Three distinct coating bath temperatures (85 °C, 90 °C, and 95 °C) were varied for coating deposition. The coatings showed nodular morphology. Thermogravimetric study of ENB-W coatings revealed improved thermal stability attained at 95 °C bath temperature. The microhardness of ENB-W coating was 645, 690, and 720 HV100 at bath temperatures of 85 °C, 90 °C, and 95 °C respectively. The inclusion of W to Ni–B coating enhanced the hardness by ∼150 HV100. On a pin-on-disc tribometer, wear test was conducted. The precipitation of Ni (111) and its borides occurred post sliding wear at high temperatures (300 °C). Ni (111) crystallite size decreased because of high temperature sliding wear at 300 °C with an increase in coating bath temperature. With a reduction in crystallite size at high temperatures, both wear rate and COF decreases. The scratch hardness and first critical load of failure of the coatings was determined using a scratch tester. Using potentiodynamic polarization, corrosion resistance of ENB-W coatings in 3.5% NaCl was investigated. ENB-W coatings could provide shielding to AISI 1040 steel from corrosion. Though the corrosion resistance is poor with respect to lead stabilized coatings.
Read full abstract