Thermal insulation gunite (TIG) in roadways is an effective method for regional thermal hazard control in mines. The development of mine TIG materials is the foundation of thermal insulation technique. However, some conventional and advanced insulation materials are inapplicable to deep mines which are rather humid with high in situ stress and high geo‐temperature. In this study, a kind of fly ash‐inorganic mineral TIG material was developed and applied to the modelling of a high geo‐temperature roadway. Moreover, the thermal insulation effect of the TIG layer was analyzed, and the temperature field characteristics of the TIG surrounding rock were discussed. Results reveal that (1) the TIG layer has a significant impact on the heat release of the wall and stability of the surrounding rock temperature field; (2) the initial temperature disturbance times, temperature disturbance ranges, and temperature drop rates differ with whether a TIG layer exists or not; (3) after the TIG roadway starts to be ventilated, the thermal flux densities tend to be consistent, which indicates the end of temperature disturbance; besides, the dimensionless temperature shares an exponential relation with the dimensionless radius; and (4) the characteristics of temperature drops vary with the radial positions of the surrounding rock. The research results provide a certain reference for thermal hazard control, temperature prediction, and ventilation network adjustment.