Abstract

A three-dimensional numerical model of arc in gas metal arc welding (GMAW) with single cable-typed wire was established based on the theory of arc physics. The influences of different shielding gas flow rates on the features of temperature field, velocity field and pressure field were investigated. The results showed that the maximum velocity of arc plasma along radial direction and the arc pressure on the surface of workpieces were increased obviously with the increase of the shielding gas flow rate, while the arc temperature was changed little. This phenomenon was mainly attributed to the increasing collisions between arc plasmas and the self-rotation action of cable-typed wires. The arc temperature at the tip of the cable-typed wire reached the maximum. The maximum flow velocity of arc plasma was located at the tip of wire (2–8 mm). The arc pressures in the central axis reached the maximum pressure. The simulation results were in agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.