A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline(PANI) and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed. The percolation threshold is high and is consistent with a strong role played by voids in the structure. Temperature-dependent conductivity measurements highlight three distinct conduction regimes: insulating, critical, and metallic. These findings underscore the significant influence of synthesis method and structural disorder on shaping electronic properties, paving the way for engineering multifunctional nanocomposites with exceptional versatility and performance.
Read full abstract