In the present study, we investigate the effect of the adiabatic temperature rise property of rock-fill concrete (RFC) on the temperature stress and crack resistance of RFC gravity dams. We conducted tests on the adiabatic temperature rise of RFC with a rock-fill ratio of 42%, 49%, and 55%, respectively. Based on the regression analysis of the test data, a calculation model of the adiabatic temperature rise, considering the rock-fill ratio, is developed, and the finite element analysis software ANSYS is employed to simulate the whole process of the temperature and temperature stress fields of a RFC gravity dam. The main findings of the study are as follows: (1) Both the adiabatic temperature rise rate and the final adiabatic temperature rise of RFC are negatively correlated with the rock-fill ratio. (2) The calculation model of the adiabatic temperature rise of RFC is characterized by its high accuracy, which can help predict the adiabatic temperature rise of RFC with different rock-fill ratios. (3) Without any temperature control measures, the maximum temperature stress of RFC generated by the temperature rise of hydration heat in the RFC gravity dam is 0.93 MPa, which meets the standard of temperature stress control. The results of the present study indicate that dam construction with RFC can simplify the measures of temperature control and crack prevention, improve the construction efficiency, and reduce the cost of dam construction.
Read full abstract