AbstractClimate change increases the need to understand the effect of predicted future temperature and nutrient scenarios on marine phytoplankton. However, experimental studies addressing the effects of both drivers use a variety of design approaches regarding their temperature change rate and nutrient supply regimes. This study combines a systematic literature map to identify the existing bias in the experimental design of studies evaluating the phytoplankton response to temperature change, with a laboratory experiment. The experiment was designed to quantify how different temperature levels (6°C, 12°C, and 18°C), temperature regimes (abrupt vs. gradual increase), timings of nutrient addition (before or after the temperature change) and nutrient regimes (limiting vs. balanced) alter the growth and stoichiometry of a natural marine phytoplankton community. The systematic map revealed three key biases in marine global change experiments: (1) 66% of the studies do not explicitly describe the experimental temperature change or nutrient regime, (2) 84% applied an abrupt temperature exposure, and (3) only 15% experimentally manipulated the nutrient regime. Our experiment demonstrated that the identified biases in experimental design toward abrupt temperature exposure induced a short‐term growth overshoot compared to gradually increasing temperatures. Additionally, the timing of nutrient availability strongly modulated the direction of the temperature effect and strength of growth enhancement along balanced N : P supply ratios. Our study stresses that the rate of temperature change, the timing of nutrient addition and the N : P supply ratio should be considered in experimental planning to produce ecologically relevant results as different setups lead to contrasting directions of outcome.