"Knowledge discovery in data bases" (KDD) for software engineering is a process for finding useful information in the large volumes of data that are a byproduct of software development, such as data bases for configuration management and for problem reporting. This paper presents guidelines for extracting innovative process metrics from these commonly available data bases. This paper also adapts the Classification And Regression Trees algorithm, CART, to the KDD process for software engineering data. To our knowledge, this algorithm has not been used previously for empirical software quality modeling. In particular, we present an innovative way to control the balance between misclassification rates. A KDD case study of a very large legacy telecommunications software system found that variables derived from source code, configuration management transactions, and problem reporting transactions can be useful predictors of software quality. The KDD process discovered that for this software development environment, out of forty software attributes, only a few of the predictor variables were significant. This resulted in a model that predicts whether modules are likely to have faults discovered by customers. Software developers need such predictions early in development to target software enhancement techniques to the modules that need improvement the most.
Read full abstract