The technology of 3D printing, particularly fused deposition modeling (FDM) 3D printing, has revolutionized the development of electrochemical biosensors, offering a versatile and cost-effective approach for clinical applications. This review explores the integration of FDM in fabricating biosensing platforms tailored for clinical diagnostics, emphasizing its role in detecting various biomarkers and viral pathogens. Advances in 3D printing materials, especially the emergence of bespoke conductive filaments, have allowed the production of highly customizable and efficient biosensors. A detailed discussion focuses on the design and application of these biosensors for viral detection, highlighting their potential to improve diagnostic accuracy. Furthermore, the review addresses current trends, including the push towards miniaturization and multianalyte detection, alongside challenges such as material optimization and regulatory hurdles. By providing a comprehensive overview, this work underscores the transformative impact of 3D-printed electrochemical biosensors in clinical diagnostics while also identifying critical areas for future research and development.
Read full abstract