Early detection of breast cancer can significantly improve patient outcomes and five-year survival in clinical screening. Dynamic optical breast imaging (DOBI) technology reflects the blood oxygen metabolism level of tumors based on the theory of tumor neovascularization, which offers a technical possibility for early detection of breast cancer. In this paper, we propose an intelligent scoring system integrating DOBI features assessment and a malignancy score grading reporting system for early detection of breast cancer. Specifically, we build six intelligent feature definition models to depict characteristics of regions of interest (ROIs) from location, space, time and context separately. Similar to the breast imaging-reporting and data system (BI-RADS), we conclude the malignancy score grading reporting system to score and evaluate ROIs as follows: Malignant (≥ 80 score), Likely Malignant (60-80 score), Intermediate (35-60 score), Likely Benign (10-35 score), and Benign (<10 score). This system eliminates the influence of subjective physician judgments on the assessment of the malignant probability of ROIs. Extensive experiments on 352 Chinese patients demonstrate the effectiveness of the proposed system compared to state-of-the-art methods.
Read full abstract