Abstract
To our knowledge, integration of Web content mining of publicly available addresses with a geographic information system (GIS) has not been applied to the timely monitoring of medical technology adoption. Here, we explore the diffusion of a new breast imaging technology, digital breast tomosynthesis (DBT). We used natural language processing and machine learning to extract DBT facility location information using a set of potential sites for the New England region of the United States via a Google search application program interface. We assessed the accuracy of the algorithm using a validated set of publicly available addresses of locations that provide DBT from the DBT technology vendor, Hologic. We quantified precision, recall, and F1 score, aiming for an F1 score of ≥ 95% as the desirable performance. By reverse geocoding on the basis of the results of the Google Maps application program interface, we derived a spatial data set for use in an ArcGIS environment. Within the GIS, a host of spatiotemporal analyses and geovisualization techniques are possible. We developed a semiautomated system that integrated DBT location information into a GIS that was feasible and of reasonable quality. Initial accuracy of the algorithm was poor using only a search term list for information retrieval (precision, 35%; recall, 44%; F1 score, 39%), but performance dramatically improved by leveraging natural language processing and simple machine learning techniques to isolate single, valid instances of DBT location information (precision, 92%; recall, 96%; F1 score, 94%). Reverse geocoding yielded reliable geographic coordinates for easy implementation into a GIS for mapping and planned monitoring. Our novel approach can be applicable to technologies beyond DBT, which may inform equitable access over time and space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.