Recent interest in quantum nonlinearity has spurred the development of rectifiers for harvesting energy from ambient radiofrequency waves. However, these rectifiers face efficiency and bandwidth limitations at room temperature. We address these challenges by exploring Bi2Te3, a time-reversal symmetric topological quantum material. Bi2Te3 exhibits robust room temperature second-order voltage generation in both the longitudinal and transverse directions. We harness these coexisting nonlinearities to design a multidirectional quantum rectifier that can simultaneously extract energy from various components of an input signal. We demonstrate the efficacy of Bi2Te3-based rectifiers across a broad frequency range, spanning from existing Wi-Fi bands (2.45 GHz) to frequencies relevant to next-generation 5G technology (27.4 GHz). Our Bi2Te3-based rectifier surpasses previous limitations by achieving a high rectification efficiency and operational frequency, alongside a low operational threshold and broadband functionality. These findings enable practical topological quantum rectifiers for high-frequency electronics and energy conversion, advancing wireless energy harvesting for next-generation communication.