In recent years, spinal surgery has incorporated the many advantages of navigation techniques to facilitate the placement of pedicle screws during osteosynthesis, mainly for degenerative diseases. However, spinal intradural tumors are not clearly visible by intraoperative fluoroscopy or computed tomography scans, thereby making navigation necessary. To evaluate the use of spinal navigation for the removal of intradural and spinal cord tumors using spinal magnetic resonance imaging (MRI) merged with intraoperative 3-dimensional (3-D) fluoro images. After fixing the patient reference frame on the spinous process, the 3-D fluoro images were obtained in the surgical room. Using this image as the reference, the preoperative volumetric MRI images and intraoperative 3-D fluoro images were merged using automated software or manually. From January to July 2016, we performed 10 navigated procedures for intradural spinal tumors by merging MRI and 3-D fluoro images. Nine patients had an intradural extramedullary tumor, 6 had neurinomas, and 3 had meningiomas; 1 patient had an intramedullary spinal cord metastasis. The surgically demonstrated benefits of spinal navigation for the removal of intradural tumors include the decreased risk of surgery at the wrong spinal level, a minimal length of skin incision and muscle strip, and a reduction in bone removal extension. Furthermore, this technique offers the advantage of opening the dura as much as is necessary and, in the case of intrinsic spinal cord tumors, it allows the tumor to be centered. Otherwise, this would not be visible, thus enabling the precise level and the posterior midline sulcus to be determined when performing a mielotomy.