We develop a lubrication theory-based mathematical model that describes the dynamics of a tear film during blinking and contact lens (CL) wear. The model extends previous work on pre-corneal tear film dynamics during blinking by coupling the partial differential equation for tear film thickness to a dynamic model for CL motion. We explore different models for eyelid motion and also account for possible voluntary and involuntary globe (eyeball) rotation that may accompany blinking. Boundary conditions for mass flux at the eyelids are also adapted to account for the presence and motion of the CL. Our predictions for CL motion compare reasonably with existing data. Away from the eyelids the pre-lens tear film (PrLTF) is shifted, relative to its pre-corneal counterpart, in the direction of CL motion. Near the eyelids, the inflow/outflow of fluid under the eyelids also influences the PrLTF profile. We also compare our PrLTF dynamics to existing in vivo tear film thickness measurements.
Read full abstract