Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and cleft palate. A pharmacodynamic comparison of the alkaloids ammodendrine, anabasine, anabaseine, anagyrine, and coniine in SH-SY5Y cells and TE-671 cells was made. These alkaloids and their enantiomers were more effective in depolarizing TE-671 cells which express the human fetal-muscle type nicotinic acetylcholine receptor (nAChR) relative to SH-SY5Y cells which predominately express autonomic nAChRs. The rank order of potency in TE-671 cells was: anabaseine > (+)-anabasine > (−)-anabasine > (±)-anabasine > anagyrine > (−)-coniine > (±)-coniine > (+)-coniine > (±)-ammodendrine > (+)-ammodendrine. The rank order potency in SH-SY5Y cells was: anabaseine > (+)-anabasine > (−)-coniine > (+)-coniine > (+)-ammodendrine > anagyrine > (−)-anabasine > (±)-coniine > (±)-anabasine > (−)-ammodendrine. The actions of these alkaloids at nAChRs in both cell lines could be distinguished by their maximum effects in depolarizing cell membrane potential. The teratogenic action of these compounds may be related to their ability to activate and subsequently desensitize nAChRs.
Read full abstract