As technology scales toward deep submicron, the integration of complete system-on-chip (SoC) designs consisting of large number of Intellectual Property (IP) blocks (cores) on the same silicon die is becoming technically feasible. Until recently, the design-space exploration for SoCs has been mainly focused on the computational aspects of the problem. However, as the number of IP blocks on a single chip and their performance continue to increase, a shift from computation-based to communication-based designs becomes mandatory. As a result, the communication architecture plays a major role in the area, performance and energy consumption of the overall systems [Pasricha S, Dutt N. On-chip communication architectures: system on chip interconnect. Amsterdam: Elsevier Inc.; 2008, Kim J, Verbauwhede I, Chang MCF. Design of an interconnect architecture and signaling technology for parallelism in communication. IEEE Trans VLSI Syst 2007;15(8):881–94]. This article presents a structure of a wrapper as a component of Code Division Multiple Access, CDMA, based shared bus architecture in a SoC. Two types of wrappers can be identified, master and slave. A master wrapper is located between the arbiter and CDMA coded physical interconnect, while a slave connects the CDMA coded bus with memory/peripheral module. In the proposal, only bus lines that carry address and data signals are CDMA coded. We implemented a pair of master–slave wrapper described in VHDL and confirmed its functionality using testbenches. Also we synthesized wrappers using a Xilinx Spartan and Virtex devices to determine resource requirements in respect to a number of equivalent gates, communication bandwidth, latency and power consumption. Specifically we involved a Design_Quality, DQ, metric for wrapper performance evaluation. A pair of master–slave wrapper seems to occupy appropriate space, in average 2000 equivalent gates, considering CPU cost of about 30,000 gates, what is less than 8% of hardware overhead per CPU. We also present experimental results which show that benefits of involving CDMA coding relates both to decreasing a number of bus lines and accomplishing simultaneous multiple master–slave connections at relatively low-power consumption and high communication bandwidth. Convenient range indices R W and R R to determine data transfer rate for Write and Read operations in multiprocessor bus systems that use TDMA and CDMA data transfer techniques. The obtained results show that increased data transfer latencies involved by CDMA data transfer are compensated by simultaneous master–slave transfers.
Read full abstract