Regulatory T cells (Tregs) are major players in immune homeostasis, and defects in their number and/or function are associated with a broad range of immunological disorders including autoimmunity, graft-versus-host disease (GvHD), transplant rejection, chronic infections or malignant diseases.1, 2 One way of how Tregs actively damp an immune response might be direct induction of apoptosis in activated antigen-presenting cells as well as in conventional effector T cells (Teffs) by secretion of lytic granzyme- and perforin-containing granula. Despite the substantial progress made in our understanding of Treg biology, the cytotoxic potential of Tregs is still under debate. As Tregs are under intense investigation as cellular therapeutics for treatment of GvHD and graft rejection, and might also interfere with novel antitumor strategies,3 this question is not a purely academic one but also implies major consequences for the prospective development of clinical treatment strategies involving Tregs. To shed some light on this controversial issue, we decided to analyze this question using peripheral human Tregs, as these cells are one major source for potential therapeutic applications.1, 2 As Tregs are a very rare population in human peripheral blood, it seems currently technically too challenging to isolate sufficient Treg numbers with defined antigen-specificity in a way as it can be done for—for example, virus- or tumor-specific Teffs. Therefore, in this study recombinant bispecific antibodies (bsAb) were applied for antigen-specific redirection of polyclonal human T cells as surrogate for T-cell receptor (TCR)-mediated stimulation. BsAb comprise binding sites for two different target antigens (for example, CD3 and a cell surface antigen) and can directly cross-link T cells and antigen-expressing cells. This results in a major histocompatibility complex (MHC)- and TCR-independent activation and triggering of effector mechanisms of the cross-linked immune cell.4 T-cell-engaging bsAb have been proven to be highly effective in inducing the lytic capacity of both CD4+ and CD8+ Teffs in vitro, in vivo and even in clinical trials and closely resemble signal cascades induced upon binding of a TCR to its target peptide/MHC complex.4, 5, 6
Read full abstract