Experimental evidence suggests that cellular damage mediated by oxidants could be involved in the pathology associated with lead (Pb) toxicity. We investigated the effect of Pb 2+ on lipid oxidation in liposomes using different initiators. In the presence of Fe 2+, Pb 2+ (12.5–200 μM) stimulated lipid oxidation in phosphatidylcholine:phosphatidylserine-containing liposomes, measured as 2-thiobarbituric acid-reactive substances (TBARS) and conjugated dienes. This stimulatory effect depended on the presence of membrane negative charges and on bilayer integrity. Pb 2+ did not stimulate TBARS formation in the presence of 25 mM 2,2′-azo-bis (2,4 dimethylvaleronitrile (AMVN) and 2,2′ azobis (2-amidinopropane) (AAPH). Pb 2+ significantly stimulated TBARS production and NADH oxidation in the presence of photoactivated rose Bengal. The use of specific inhibitors indicated that several reactive oxygen species were involved in the pro-oxidant action of Pb 2+. Pb 2+ (12.5–200 μM) caused membrane lateral phase separation and this effect was positively correlated with its capacity to stimulate Fe 2+ and rose Bengal-initiated TBARS production. Pb 2+ could bind to the membrane and act to stimulate lipid oxidation by causing changes in membrane physical properties. Through this mechanism Pb 2+ would favor the propagation of lipid oxidation. By causing lateral phase separation and/or by increasing lipid oxidation rates, Pb 2+ could be cytotoxic by altering membrane-related processes.
Read full abstract