Resistance to cisplatin (DDP) in ovarian cancer therapy has been a major clinical barrier. Drug-resistant cancers have been shown to downregulate the proapoptotic protein B-cell lymphoma-2 (Bcl-2) to inhibit apoptosis. Therefore, we explored whether tasquinimod could modulate resistance to DDP through apoptotic pathways. We aimed to explore the relationship between tasquinimod, Nur77-Bcl-2 apoptosis pathway and sensitivity of the ovarian carcinoma cell line SKOV3 and the DDP-resistant strain SKOV3/DDP cells to DDP. First, SKOV3 and SKOV3/DDP cells were treated with 2 μg/mL DDP or 40 μM tasquinimod. Western blot and quantitative real-time polymerase chain reaction (qPCR) were then used to analyze the expression of histone deacetylase 4 (HDAC4), Nur77, Bcl-2 (BH3 domain-specific), and caspase-3. Flow cytometry, scratch-wound assay and immunofluorescence were used to detect apoptosis, migration rate, and related expression of Nur77 and Bcl-2 (BH3 domain-specific). Subsequently, 5×107 SKOV3 or SKOV3/DDP cells cultured with 2 μg/mL DDP were injected into 4-week-old female BALB/c nude mice. Then, the mice were administered 4 mg/kg DDP and 50 mg/kg tasquinimod every 3 days. Finally, the changes in tumor diameter and weight were measured. After treatment of SKOV3 and SKOV3/DDP cells with tasquinimod, cell migration and HDAC4 expression levels were significantly reduced, while Nur77 expression was increased. Tasquinimod treatment enhanced the expression of Nur77 and caspase-3, and cells transfected with si-Nur77 showed the opposite result. Transfection of si-Nur77 reduced the expression of caspase-3 and Nur77 in the SKOV3/DDP cells that were treated with both DDP and tasquinimod. After injection of SKOV3/DDP cells into the mice, the tumor diameter, mass and in vivo HDAC4 level were significantly decreased by tasquinimod. Meanwhile, the levels of Nur77 and Bcl-2 (BH3 domain-specific) were increased. Tasquinimod upregulated the Nur77/Bcl-2 pathway to induce apoptosis in SKOV3/DDP cells and enhanced the anti-tumor effect of DDP in SKOV3/DDP xenografts. Therefore, tasquinimod can be expected to find clinical applications in enhancing DDP resistance.