Purpose Improving the ability to listen efficiently in noisy environments is a critical goal for hearing rehabilitation. However, understanding of the impact of difficult listening conditions on language processing is limited. The current study evaluated the neural processes underlying semantics in challenging listening conditions. Method Thirty adults with normal hearing completed an auditory sentence processing task in 4-talker babble. Event-related brain potentials were elicited by the final word in high- or low-context sentences, where the final word was either highly expected or not expected, followed by a 4-alternative forced-choice response with either longer (1,000 ms), middle (700 ms), or shorter (400 ms) response time deadlines (RTDs). Results Behavioral accuracy was reduced, and reactions times were faster for shorter RTDs. N400 amplitudes, reflecting ease of lexical access, were larger when elicited by target words in low-context sentences followed by shorter compared with longer RTDs. Conclusions These results reveal that more neural resources are allocated for semantic processing/lexical access when listening difficulty increases. Differences between RTDs may reflect increased attentional allocation for shorter RTDs. These findings suggest that situational listening demands can impact the demands for cognitive resources engaged in language processing, which could significantly impact listener experiences across environments.