Colorful signals in nature provide some of the most stunning examples of rapid phenotypic evolution. Yet, studying color pattern evolution has been historically difficult owing to differences in perceptual ability of humans and analytical challenges with studying how complex color patterns evolve. Island systems provide a natural laboratory for testing hypotheses about the direction and magnitude of phenotypic change. A recent study found that plumage colors of island species are darker and less complex than continental species. Whether such shifts in plumage complexity are associated with increased rates of color evolution remains unknown. Here, we use geometric morphometric techniques to test the hypothesis that plumage complexity and insularity interact to influence color diversity in a species-rich clade of colorful birds-kingfishers (Aves: Alcedinidae). In particular, we test three predictions: (1) plumage complexity enhances interspecific rates of color evolution, (2) plumage complexity is lower on islands, and (3) rates of plumage color evolution are higher on islands. Our results show that more complex plumages result in more diverse colors among species and that island species have higher rates of color evolution. Importantly, we found that island species did not have more complex plumages than their continental relatives. Thus, complexity may be a key innovation that facilitates evolutionary response of individual color patches to distinct selection pressures on islands, rather than being a direct target of selection itself. This study demonstrates how a truly multivariate treatment of color data can reveal evolutionary patterns that might otherwise go unnoticed.
Read full abstract