Abstract

AbstractPhysical performance traits are key components of fitness and direct targets of selection. Although maternal effects have important influences on integrated phenotypes, their contributions to variation in performance and to phenotypic traits associated with performance remain poorly understood. We used an animal model to quantify the contribution of maternal effects to performance trait variation, in addition to the genetic and maternal correlations between performance and the relevant underlying morphology in Microcebus murinus. We showed that bite force is heritable (h2 ≈ 0.23) and that maternal effects are an important source of variation, resulting in a medium inclusive heritability (IH2 ≈ 0.47). Bite force and head depth showed a significant genetic correlation (0.70), and other genetic correlations were generally high (0.63 for bite force and head width; 0.41 for pull strength and radius length, albeit not significant), as were the maternal correlations for bite force and head dimensions (0.44, 0.73 and 0.29). Finally, we found differences in evolvability for pull strength and bite force that were also consistent with a higher potential for evolutionary change in pull force. This demonstrates clear effects of the maternal environment on performance expression and on the relationships between morphology and performance. This illustrates the importance of accounting for maternal identity when considering the heritabilities of functional traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call