PEGylated liposomes can deliver anti-cancer drugs to brain tumors, and achieve enhanced permeability and retention effects. Triggering receptor expressed on myeloid cells 2 (TREM2) is an excellent biomarker for precise therapyof glioma. The present study is aimed at designing PEGylatednanoliposomal doxorubicin (PLD) conjugated with peptides targeting TREM2 for glioma-targeting therapy. The specific peptides are designed with the Rosetta Peptiderive Protocol. Schrodinger's peptide-specific version of Glide is used for molecular docking.PLD modified with peptides (peptide-PLD) are engineered and prepared. Cell cycle, apoptosis, cell invasion and migration, cell viability, and colony-formation assays are performed to analyze glioma cell functions. The anti-tumor effects of peptide-PLD are validated in an intracranial U87-MG cells orthotopic glioma model. The targeting peptides HLRKLRKR and LRKLRLRL showed specific affinity for TREM2 and better cellular uptake in U87-MG cells. PLD with peptide modification demonstrated stable doxorubicin loading, small sizes (<60nm), and enrichment in the mouse brain. Peptide-PLD treatment inhibited the Akt/GSK3β/β-catenin pathway, thereby inhibiting cell invasion and migration, and colony-forming ability in U87-MG cells. The peptide modification of PLD achieved better suppression of glioma development than PLD.Overall, TREM2-targeting peptides are successfully designed, and peptide-PLD served as a potent drug delivery carrier for glioma-targeting therapy.
Read full abstract