The prognosis of patients with high-risk neuroblastoma remains poor, partly due to inadequate immune recognition of the tumor. Neuroblastomas display extremely low surface MHC-I, preventing recognition by cytotoxic T lymphocytes (CTLs) and contributing to an immunosuppressive tumor microenvironment. Glycogen synthase kinase-3 beta (GSK-3β) is involved in pathways that may affect the MHC-I antigen processing and presentation pathway. We proposed that therapeutic inhibition of GSK-3β might improve the surface display of MHC-I molecules on neuroblastoma cells, and therefore tested if targeting of GSK-3β using the inhibitor 9-ING-41 (Elraglusib) improves MHC-I-mediated CTL recognition. We analyzed mRNA expression data of neuroblastoma tumor datasets and found that non-MYCN-amplified neuroblastomas express higher GSK-3β levels than MYCN-amplified tumors. In non-MYCN-amplified cells SH-SY5Y, SK-N-AS and SK-N-SH 9-ING-41 treatment enhanced MHC-I surface display and the expression levels of a subset of genes involved in MHC-I antigen processing and presentation. Further, 9-ING-41 treatment triggered increased STAT1 pathway activation, upstream of antigen presentation pathways in two of the three non-MYCN-amplified cell lines. Finally, in co-culture experiments with CD8 + T cells, 9-ING-41 improved immune recognition of the neuroblastoma cells, as evidenced by augmented T-cell activation marker levels and T-cell proliferation, which was further enhanced by PD-1 immune checkpoint inhibition. Our preclinical study provides experimental support to further explore the GSK-3β inhibitor 9-ING-41 as an immunomodulatory agent to increase tumor immune recognition in neuroblastoma.
Read full abstract