Sensitive and on-site discrimination of live and dead foodborne pathogenic strains remains a significant challenge due to the lack of appropriate assay and signal probes. In this work, a versatile platinum nanoparticle-decorated phage nanozyme (P2@PtNPs) that integrated recognition, bacteriolysis, and catalysis was designed to establish the bioluminescence/pressure dual-mode bioassay for on-site determination of the vitality of foodborne pathogenic strains. Benefiting from the bacterial strain-level specificity of phage, the target Salmonella typhimurium (S.T) was specially captured to form sandwich complexes with P2@PtNPs on another phage-modified glass microbead (GM@P1). As the other part of the P2@PtNPs nanozyme, the introduced PtNPs could not only catalyze the decomposition of hydrogen peroxide to generate a significant oxygen pressure signal but also produce hydroxyl radicals around the target bacteria to enhance the bacteriolysis of phage and adenosine triphosphate release. It significantly improved the bioluminescence signal. The two signals corresponded to the total and live target bacteria counts, so the dead target could be easily calculated from the difference between the total and live target bacteria counts. Meanwhile, the vitality of S.T was realized according to the ratio of live and total S.T. Under optimal conditions, the application range of this proposed bioassay for bacterial vitality was 102-107 CFU/mL, with a limit of detections for total and live S.T of 30 CFU/mL and 40 CFU/mL, respectively. This work provides an innovative and versatile nanozyme signal probe for the on-site determination of bacterial vitality for food safety.