In the present study, we aimed to detect microRNA-210 (miR-210) expression in the peripheral blood of neonates with asphyxia and determine the correlation between miR-210 and clinical manifestations and indicators related to pathological changes. Further, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the potential target genes of miR-210 to examine their related diseases and network interactions. In total, 27 neonates with asphyxia were included in the asphyxia group and 26 healthy neonates were included in the normal group. Quantitative real-time polymerase chain reaction was performed to measure miR-210 expression in the peripheral blood. Furthermore, the correlation between miR-210 expression and asphyxia-related clinical indicators was determined, and the receiver operating characteristic curve analysis of miR-210 was conducted. Moreover, GO and KEGG analyses were conducted to identify the target genes of miR-210. Lastly, the association between miR-210 target genes and autism and epilepsy was elucidated and network interaction analysis was performed to determine the involvement of the target genes of miR-210 in neurological or cardiovascular diseases. miR-210 was highly expressed in the peripheral blood of neonates with asphyxia. Furthermore, the mode of normal delivery, cord potential of hydrogen, and Apgar scores were elevated in these neonates. Additionally, we identified 142 miR-210 target genes, which were associated with both neurodevelopmental and cardiovascular diseases. These genes were associated with the metabolic, cancer, and phosphatidylinositol3-kinase/serine/threonine kinase and mitogen-activated kinase-like protein pathways. Furthermore, 102 miR-210 target genes were associated with autism and epilepsy. High miR-210 expression in the peripheral blood of neonates with asphyxia may be associated with anoxic cerebral injury. The miR-210 target genes are associated with neurodevelopmental and cardiovascular diseases and autism and epilepsy.