Although the anatomy of the thoracic pedicle in adolescent idiopathic scoliosis is well known, that of the lumbar pedicle in degenerative lumbar scoliosis is not. The morphometric differences between the pedicles on the concave and convex sides can result in an increased risk of malpositioned pedicle screws. The purpose of this study was to analyze the lumbar pedicle morphology in degenerative lumbar scoliosis using multiplanar reconstructed CT. The study group comprised 16 consecutive patients (1 man and 15 women, mean age 70.9 ± 4.5 years) with degenerative lumbar scoliosis characterized by a Cobb angle of at least 30° who underwent preoperative helical CT scans. The CT data in DICOM format were reconstructed, and the following parameters were measured for each pedicle inside the curves: the inner cortical transverse pedicle width (TPWi) and outer cortical transverse pedicle width (TPWo) and axial angle, all on an axial plane, and the inner cortical minimum pedicle diameter (MPDi) and outer cortical minimum pedicle diameter (MPDo) and cephalocaudal inclination of the pedicle, all on the plane perpendicular to the pedicle axis. The cortical thickness and cortical ratio of the pedicles on the axial plane and the plane perpendicular to the pedicle axis were calculated. Data were obtained for a total of 124 pedicles; L-1, 26 pedicles in 13 patients; L-2, 32 pedicles in 16 patients; L-3, 32 pedicles in 16 patients; L-4, 28 pedicles in 14 patients; and L-5, 6 pedicles in 3 patients. Among the target vertebrae, the TPWi, MPDi, and MPDo were significantly smaller and the axial angle was significantly larger on the concave side than on the convex side (TPWi, 6.37 vs 6.70 mm, p < 0.01; MPDi, 5.15 vs 5.67 mm, p < 0.01; MPDo, 7.91 vs 8.37 mm, p < 0.05; axial angle, 11.79° vs 10.56°, p < 0.01). The cortical ratio of the pedicles was larger on the concave side than on the convex side (on the axial plane, 0.29 vs 0.26, p < 0.05; on the plane perpendicular to the pedicle axis, 0.36 vs 0.32, p < 0.01). These differences were most evident at L-4. This study demonstrated lumbar pedicle asymmetry in degenerative lumbar scoliosis. The authors speculate that these asymmetrical changes were attributed to the remodeling caused by axial load imbalance and the limited space available for pedicles on the concave side. On the concave side, because of the narrower pedicle diameter and larger axial angle, surgeons should carefully determine screw size and direction when inserting pedicle screws to prevent possible pedicle wall breakage and neural damage.
Read full abstract