Recombinant reversed caspase-3 (rev-caspase-3) is a pro-apoptotic gene capable of intracellular autocatalytic processing, which leads to programmed cell death. Folate receptor-specific intracellular delivery of the rev-caspase-3 gene into KB cells over-expressing folate receptors was explored by employing the folate–poly(ethylene glycol)–polyethylenimine (FOL–PEG–PEI) conjugate as a nonviral polymeric carrier. Using luciferase as a reporter gene, the conditions for formulation of DNA/polymer polyplexes were pre-optimized to attain the highest folate receptor-mediated gene transfection efficiency. FOL–PEG–PEI conjugate complexed with rev-caspase-3 plasmid in an optimized condition gave rise to a great increase in expression and activation of exogenous rev-caspase-3 in KB cells when pretreated with doxorubicin. The synthesized conjugate exhibited higher transfection efficiency than other commercially available transfection agents due to a unique mechanism of folate-receptor mediated endocytic gene transfer. The transfected cells showed a significant extent of apoptosis by rev-caspase-3. This study suggests the potential of using folate-receptor-mediated delivery of rev-caspase-3 gene for inducing tumor cell death in a target-specific manner.