A major locus for spike compactness and length was mapped on chromosome 7H and its pleiotropic effects, candidate genes and transcriptional regulatory network were analyzed. Spike compactness (SC) and length (SL) are important traits of barley (Hordeum vulgare L.) due to their close association with grain yield. In this study, a major SC and SL locus QSc/Sl.cib-7H was primarily identified on chromosome 7H by bulked segregant analysis, and further fine mapped to a recombination cold spot expanding 244.36-388.09Mb by developing a secondary population using residual heterozygous lines. This region is much more accurate than previously reported spike compactness loci on chromosome 7H.The strong effects of QSc/Sl.cib-7H on SL and SC were validated in two pair of near isogenic lines (NILs) and diverse genetic backgrounds. QSc/Sl.cib-7H exhibited pleiotropic effects on plant height (PH), thousand grain weight and grain length, and did not significantly influence the spikelet number of main spike (SMS) and grain width. Transcriptome analysis based on NILs showed that regulation of SC and SL might be related to the plant circadian rhythm pathway. The candidate genes were mined by analyzing variants and expression patterns of genes in the target region employing multiple genome and transcriptome data. This study takes a further step towards cloning of QSc/Sl.cib-7H, and the data obtained and the developed molecular markers will facilitate its utilization in barley breeding.
Read full abstract