Glycosylated RNAs (glycoRNAs) have recently emerged as a new class of molecules of substantial interest owing to their potential roles in cellular processes and diseases. However, studying glycoRNAs is challenging owing to the lack of effective research tools including, but not limited to, imaging techniques to study the spatial distribution of glycoRNAs. Recently, we reported the development of a glycoRNA imaging technique, called sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA), to visualize sialic acid-containing glycoRNAs with high sensitivity and specificity. Here we describe the experimental design principles and detailed step-by-step procedures for ARPLA-assisted glycoRNA imaging across multiple cell types. The procedure includes details for target selection, oligo design and preparation, optimized steps for RNA in situ hybridization, glycan recognition, proximity ligation, rolling circle amplification and a guideline for image acquisition and analysis. With properly designed probe sets and cells prepared, ARPLA-based glycoRNA imaging can typically be completed within 1 d by users with expertise in biochemistry and fluorescence microscopy. The ARPLA approach enables researchers to explore the spatial distribution, trafficking and functional contributions of glycoRNAs in various cellular processes.
Read full abstract