The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products (APs) have provided long-term and wide-spatial-coverage aerosol optical properties across the globe, such as aerosol optical depth (AOD). However, the performance of the latest Collection 6.1 (C6.1) of MODIS APs is still unclear over urban areas that feature complex surface characteristics and aerosol models. The aim of this study was to validate and compare the performance of the MODIS C6.1 and C6 APs (MxD04, x = O for Terra, x = Y for Aqua) over Beijing, China. The results of the Dark Target (DT) and Deep Blue (DB) algorithms were validated against Aerosol Robotic Network (AERONET) ground-based observations at local sites. The retrieval uncertainties and accuracies were evaluated using the expected error (EE: ±0.05 + 15%) and the root-mean-square error (RMSE). It was found that the MODIS C6.1 DT products performed better than the C6 DT products, with a greater percentage (by about 13%–14%) of the retrievals falling within the EE. However, the DT retrievals collected from two collections were significantly overestimated in the Beijing region, with more than 64% and 48% of the samples falling above the EE for the Terra and Aqua satellites, respectively. The MODIS C6.1 DB products performed similarly to the C6 DB products, with 70%–73% of the retrievals matching within the EE and estimation uncertainties. Moreover, the DB algorithm performed much better than DT algorithm over urban areas, especially in winter where abundant missing pixels were found in DT products. To investigate the effects of factors on AOD retrievals, the variability in the assumed surface reflectance and the main optical properties applied in DT and DB algorithms are also analyzed.
Read full abstract