Lysosomes are pivotal in diverse physiological phenomena, encompassing autophagy, apoptosis, and cellular senescence. The demand for precise tumors treatment has led to the development of specific lysosome-targeting probes capable of elucidating lysosomal dynamics and facilitating targeted cell death. In this research, we report the synthesis and characterization of a novel benzopyrrolidinyl-substituted silicon phthalocyanine (Py-SiPc), designed for selective lysosome labeling and Fluorescence imaging-guided in vitro photodynamic therapy. Furthermore, we encapsulated Py-SiPc within a biocompatible nanocarrier, dipalmitoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE), to create water-soluble nanoparticles (DSPE@Py-SiPc). These nanoparticles exhibit exceptional lysosome labeling capabilities, as evidenced by bioimaging techniques. Upon exposure to laser irradiation, DSPE@Py-SiPc efficiently induces the production of reactive oxygen species, impairing lysosomal function and triggering lysosomal-mediated cell death. The DSPE@Py-SiPc system emerges as a promising photosensitizer for cancer therapy, heralding a new era in targeted phototherapy.
Read full abstract