In order to adequately interpret the heat and mass transfer data taken in a gas-fluidized bed, it is essential to know the bubble dynamics and solids movement in the bed, and solids elutriation from the bed. To generate information on these aspects, an experimental facility has been designed, fabricated and successfully tested. This consists of a two-dimensional fluidized bed with its gas supply and cleanup system. The bubble dynamics and solids projection from the bed are recorded by a high-speed movie camera. The films are analyzed on a photo-optical data analyser and digitizer provided with an electronic graphics calculator connected to tape printer and a Teletype terminal interfaced with a computer. The analysis of recorded bed dynamics suggests that for large particles the bubbles grow to be non-spherical and these rise almost above the bed surface before bursting when the wake remains intact while the solids bulge at the bubble nose ruptures to release the bubble gas. It is concluded unambiguously t...