Structural investigations, i.e. solid-state (X-ray), solution (1H NMR) and gas-phase (theoretical), on molecules with the general formula MeOC(S)N(H)C6H4-4-Y: Y = H (1), NO2 (2), C(O)Me (3), Cl (4) have shown a general preference for the adoption of an E-conformation about the central C–N bond. Such a conformation allows for the formation of a dimeric hydrogen-bonded {⋯H–N–CS}2 synthon as the building block. In the cases of 1–3, additional C–H⋯O interactions give rise to the formation of tapes of varying topology. A theoretical analysis shows that the preference for the E-conformation is about the same as the crystal packing stabilisation energy and consistent with this, the compound with Y = C(O)OMe, (5), adopts a Z-conformation in the solid-state that facilitates the formation of N–H⋯O, C–H⋯O and C–H⋯S interactions, leading to a layer structure. Global crystal packing considerations are shown to be imperative in dictating the conformational form of molecules 1–5.
Read full abstract