One of the major threats to marine ecosystems is pollution, particularly, that associated with the offshore oil and gas industry. Oil spills occur in the world's oceans every day, either as large-scale spews from drilling-rig or tanker accidents, or as smaller discharges from all sorts of sea-going vessels. In order to contribute to the timely detection and monitoring of oil spills over the oceans, we propose a new Multi-channel Deep Neural Network (M-DNN) segmentation model and a new and effective Synthetic Aperture Radar (SAR) image dataset, that enable us to emit forewarnings in a prompt and reliable manner. Our proposed M-DNN is a pixel-level segmentation model intended to improve previous DNN oil-spill detection models, by taking into account multiple input channels, complex oil shapes at different scales (dimensions) and evolution in time, and look-alikes from low wind speed conditions. Our methodology consists of the following components: 1) New Multi-channel SAR Image Database Development; 2) Multi-Channel DNN Model based on U-net and ResNet; and 3) Multi-channel DNN Training and Transfer Learning. Due to the lack of public oil spill databases guaranteeing a correct learning process of the M-DNN, we developed our own database consisting of 16 ENVISAT-ASAR images acquired over the Gulf of Mexico during the Deepwater Horizon (DWH) blowout, off the west coast of South Korea during the Hebei Spirit oil tanker collision, and over the Black Sea. These images were pre-processed to create a 3-channel input image IM = {IO, IW, IV}, to feed in and train our M-DNN. The first channel IO represents the radiometric values of the original SAR Images, the second and third channels are derived from IO; in particular, IW represents the output of the wind speed estimation using CMOD5 algorithm (Hersbach et al., 2003) and IV represents the variance of IO that incorporates texture information and at the same time encapsulates oil spill transition regions. IM channels were split and linearly transformed for data augmentation (rotation and reflection) to obtain a total of 80,772 sub-images of 224 × 224 pixels. From the entire database, 80 % of the sub-images were used in the DNN training process, the remaining (20 %) was used for testing our final architecture. Our experimental results show higher pixel-level classification accuracy when 2 or 3 channels are used in the M-DNN, reaching an accuracy of 98.56 % (the highest score reported in the literature for DNN models). Additionally, our M-DNN model provides fast training convergence rate (about 14 times better on the average than previous works), which proves the effectiveness of our proposed method. According to our knowledge, our work is the first multi-channel DNN based scheme for the classification of oil spills at different scales.