Large-scale and precise measurement of mangrove canopy height is crucial for understanding and evaluating wetland ecosystems' condition, health, and productivity. This study generates a global mangrove canopy height map with a 30 m resolution by integrating Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) photon-counting light detection and ranging (LiDAR) data with multi-source imagery. Initially, high-quality mangrove canopy height samples were extracted using meticulous processing and filtering of ICESat-2 data. Subsequently, mangrove canopy height models were established using the random forest (RF) algorithm, incorporating ICESat-2 canopy height samples, Sentinel-2 data, TanDEM-X DEM data and WorldClim data. Furthermore, a global 30 m mangrove canopy height map was generated utilizing the Google Earth Engine platform. Finally, the global map's accuracy was evaluated by comparing it with reference canopy heights derived from both space-borne and airborne LiDAR data. Results indicate that the global 30 m resolution mangrove height map was found to be consistent with canopy heights obtained from space-borne (r = 0.88, Bisa = −0.07 m, RMSE = 3.66 m, RMSE% = 29.86 %) and airborne LiDAR (r = 0.52, Bisa = −1.08 m, RMSE = 3.39 m, RMSE% = 39.05 %). Additionally, our findings reveal that mangroves worldwide exhibit an average height of 12.65 m, with the tallest mangrove reaching a height of 44.94 m. These results demonstrate the feasibility and effectiveness of using ICESat-2 data integrated with multi-source imagery to generate a global mangrove canopy height map. This dataset offers reliable information that can significantly support government and organizational efforts to protect and conserve mangrove ecosystems.
Read full abstract