Abstract

Abstract. Global warming plays a principal role on the continuous increasing sea-level rise, which exposes coastal regions worldwide to flooding threat. However, the challenge is that the regional impact of SLR flooding can be variable, especially when considering multiple effects of land subsidence, long-term general sea-level rise and extreme weather conditions like storm surge. In this paper, we build module with high-resolution InSAR-derived precision DEMs with resolution of 4 m, long-term SLR trend and episodic signals of climate change to calculate the relative sea level in AD 2100 on various scenarios over the Jiaozhou Bay, one typical region of the biggest peninsula in China and an important economic centre adjoining to the Yellow Sea. The potential of TanDEM-X DEM for coastal vulnerability mapping in the Qingdao coastal area were evaluated in order to investigate the effect of the accuracy and resolution of coastal topography on the reliability and usefulness of elevation-based sea-level rise assessments. The results reveal that coastal lowland areas over the JiaozhouBay are extremely vulnerable in the following years within 21st century with use of high-accuracy TanDEM-X DEM data, which would be an advantage for further elevation-based dynamic assessments of coastal inundation events considering storm surges, abnormal high tides, and extreme precipitation events. which would be vital for locally coastal protection and decision-making.

Highlights

  • Global sea-level rise projections for 2100 between 530 and 970 mm (RCP8.5) and up to about 500–1400 mm, which will threaten many coastal cities, low-lying islands and coastal plains on a global scale, even in absence of land subsidence (Pachauri et al, 2014; Hinkel et al, 2015; Cazenave et al, 2014; Cazenave and Cozannet, 2014)

  • Use of high-accuracy and high-resolution elevation data is an advantage for elevation-based assessments of coastal inundation events

  • As the first bistatic SAR Mission, TanDEM-X (TerraSARX add-on for Digital Elevation Measurements) Mission has been designed to generate three-dimensional images of the Earth with homogeneous quality and unprecedented accuracy (Zink et al, 2014)

Read more

Summary

Introduction

Global sea-level rise projections for 2100 between 530 and 970 mm (RCP8.5) and up to about 500–1400 mm, which will threaten many coastal cities, low-lying islands and coastal plains on a global scale, even in absence of land subsidence (Pachauri et al, 2014; Hinkel et al, 2015; Cazenave et al, 2014; Cazenave and Cozannet, 2014). Use of high-accuracy and high-resolution elevation data is an advantage for elevation-based assessments of coastal inundation events (e.g. storm surges, abnormal high tides, or extreme precipitation events). Researchers investigating global changes (e.g. sea level rise, coastline erosions, earthquake hazards, and land use change) have an increasing demand for high spatial resolution globally topographic data (Gesch, 1994). Since the quality of DEMs varies spatially in a regional level, TanDEM-X DEM should be assessed quantitatively and used carefully (Wessel et al, 2018; Rizzoli et al, 2017; Avtar et al, 2015).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.