Our lab has identified that transcripts and proteins of the cyclooxygenase (COX-1 and COX-2) isoenzymes are expressed during the early stages of vertebrate embryonic development, and that global COX-1/2 inhibition disrupts neural crest (NC) cell maturation in Ambystoma mexicanum (axolotl) embryos, with intriguing implications for tissue regeneration and healing. NC cells are embryonic stem cells that differentiate into various adult tissues including craniofacial cartilage, bone, and neurons in the peripheral and enteric nervous systems. Naproxen (NPX), a common non-steroidal anti-inflammatory drug (NSAID) used to relieve pain and inflammation, exerts its effects through COX-1 and COX-2 inhibition. Embryonic exposures to NSAIDs have been linked to preterm birth, neural tube closure defects, abnormal enteric innervation, and craniofacial malformations, potentially due to disrupted neural tube or NC cell development. To investigate the phenotypic and molecular effects of NPX exposure on NC development and differentiation, we exposed late neurula and early tailbud stage axolotl embryos to various concentrations of NPX and performed immunohistochemistry (IHC) for markers of migratory and differentiating NC cells. Our results reveal that NPX exposure impairs the migration of SOX9+ NC cells, leading to abnormal development of craniofacial cartilage structures, including Meckel's cartilage in the jaw. NPX exposure also alters the expression of markers associated with peripheral and central nervous system (PNS and CNS) development, suggesting concurrent neurodevelopmental changes.
Read full abstract