A collection of 4117 fertile T-DNA lines has been generated by Agrobacterium-mediated transformation of the diploid community standard line Bd21 of Brachypodium distachyon. The regions flanking the T-DNA left and right borders of the first 741 transformed plants were isolated by adapter-ligation PCR and sequenced. A total of 1005 genomic sequences (representing 44.1% of all flanking sequences retrieved) characterized 660 independent T-DNA loci assigned to a unique location in the Brachypodium genome sequence. Seventy-six percent of the fertile plant lines contained at least one anchored T-DNA locus (1.17 loci per tagged line on average). Analysis of the regions flanking both borders of the T-DNA increased the number of T-DNA loci tagged and the number of tagged lines by approximately 50% when compared to a single border analysis. T-DNA integration (2.4 insertions per Mb on average) was proportional to chromosome size, however, varied greatly along each chromosome with often low insertion level around centromeres. The frequency of insertion within transposable elements (5.3%) was fivefold lower than expected if random insertion would have occurred. More than half of the T-DNAs inserted in genic regions. On average, one gene could be tagged for every second fertile plant line produced and more than one plant line out of three contained a T-DNA insertion directly within or 500 bp around the coding sequence. Approximately, 60% of the genes tagged corresponded to expressed genes. The T-DNA lines generated by the BrachyTAG programme are available as a community resource and have been distributed internationally since 2008 via the BrachyTAG.org web site.