Background and purposeChemotherapy-induced peripheral neuropathy (CIPN) is a pharmacoresistant neurological complication induced by some antitumor drugs. This study aimed to assess antiallodynic properties of aripiprazole and ceftriaxone used alone or in combination to attenuate neuropathic pain related to CIPN caused by oxaliplatin. MethodsNeuropathic pain was induced in mice by a single intraperitoneal dose of oxaliplatin (10 mg/kg). Aripiprazole and ceftriaxone were used in a single- or repeated dosing protocol. Their antiallodynic activity was assessed using von Frey and cold plate tests on the day of oxaliplatin injection and after 7 days. The influence of aripiprazole and ceftriaxone on animals’ locomotor activity and motor coordination was also assessed. ResultsSingle-dose and repeated-dose aripiprazole 10 mg/kg and ceftriaxone 200 mg/kg used alone and in combination attenuated early-phase and late-phase tactile allodynia in oxaliplatin-treated mice. Repeated administrations of ceftriaxone 200 mg/kg prevented the development of late-phase tactile allodynia. Both drugs showed no antiallodynic properties in the cold plate test. Single-dose aripiprazole 1 and 10 mg/kg but not its repeated administration significantly decreased locomotor activity of oxaliplatin-treated mice. Single-dose aripiprazole 1 and 10 mg/kg, aripiprazole 1 mg/kg + ceftriaxone 50 mg/kg and aripiprazole 1 mg/kg + ceftriaxone 200 mg/kg impaired motor coordination in the rotarod test. ConclusionsIn mice, neither ceftriaxone nor aripiprazole attenuated cold allodynia. Ceftriaxone alone could attenuate tactile allodynia caused by oxaliplatin without inducing motor adverse effects. Although the administration of aripiprazole reduced tactile allodynia, this effect seems to be limited considering severe motor deficits induced by this drug.