In this study, some single-layer and double-layer transdermal drug delivery systems (TDDSs) with different functional and non-functional acrylic pressure-sensitive adhesives (PSAs) were prepared. For this purpose, fentanyl as a drug was used. The effects of PSAs type, single-layer and double-layer TDDSs on skin permeation and in vitro drug release from devices were evaluated using a hydrodynamically well-characterized Chien permeation system fitted with excised rat abdominal skin. The adhesion properties of devices such as peel strength and tack values were obtained as well. It was found that TDDS with -COOH functional PSA showed the lowest steady-state flux. Double-layer TDDS displayed a constant flux up to 72 h. In double- and single-layer devices after 1 and 3 h, respectively, drug release followed Higuchi's kinetic model. Formulations with the highest percentage of -COOH functional PSA have displayed the lowest flux. The double-layer TDDSs with non-functional PSA demonstrated the suitable skin permeation rate close to Duragesic(R) TDDS and suitable adhesion properties.