In this paper, 50 batches of representative traditional Chinese medicine tablets were selected and the disintegration time was examined with the method in Chinese Pharmacopoeia. The disintegration time and disintegration phenomenon were recorded, and the dissolution behaviors of water-soluble and ultraviolet-absorbent components during the disintegration process of tablets were characterized by self-control method. The results revealed that coating type and raw material type influenced the disintegration time of tablets. It was found that only 4% of traditional Chinese medicine tablets had obvious fragmentation during the disintegration process, while 96% of traditional Chinese medicine tablets showed gradual dissolution or dispersion. Furthermore, according to the disintegration speed, disintegration phenomenon, and whether the cumulative dissolution of measured components was > 90% at complete disintegration, a disintegration behavior classification system(DBCS) was created for the regular-release traditional Chinese medicine tablets. As a result, the disintegration behaviors of 50 batches of traditional Chinese medicine tablets were classified into four categories, i.e. ⅠA_2, ⅠB_1, ⅡB_1, and ⅡB_2. traditional Chinese medicine tablets(Class I) with disintegration time ≤ 30 min were defined to be rapid in disintegration, which can be the objective of optimization or improvement of Chinese herbal extract(semi extract) tablets. Different drug release models were used to fit the dissolution curve of traditional Chinese medicine tablets with gradual dissolution or dispersion phenomenon(i.e. Type B tablets). The results showed that the dissolution curves of water-soluble components in the disintegration process conformed to the zero order kinetics and the Ritger-Peppas model. It could be inferred that the disintegration mechanisms of type B tablets were a combination of dissolution controlled and swelling controlled mechanisms. This study contributes to understanding the disintegration behavior of traditional Chinese medicine tablets, and provides a reference for the design and improvement of disintegration performance of traditional Chinese medicine tablets.
Read full abstract