Middle cerebral artery (MCA) plaques are a leading cause of ischemic stroke (IS). Plaque inflammation is crucial for plaque stability and urgently needs quantitative detection. To explore the utility of Controlled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIRINHA)-Dixon-Time-resolved angiography With Interleaved Stochastic Trajectories (TWIST) (CDT) dynamic contrast-enhanced MRI (DCE-MRI) for evaluating MCA culprit plaque inflammation changes over stroke time and with diabetes mellitus (DM). Prospective. Ninety-four patients (51.6 ± 12.23 years, 32 females, 23 DM) with acute IS (AIS; N = 43) and non-acute IS (non-AIS; 14 days < stroke time ≤ 3 months; N = 51). 3-T, CDT DCE-MRI and three-dimensional (3D) Sampling Perfection with Application optimized Contrast using different flip angle Evolution (3D-SPACE) T1-weighted imaging (T1WI). Stroke time (from initial IS symptoms to MRI) and DM were registered. For 94 MCA culprit plaques, Ktrans from CDT DCE-MRI and enhancement ratio (ER) from 3D-SPACE T1WI were compared between groups with and without AIS and DM. Shapiro-Wilk test, Bland-Altman analysis, Passing and Bablok test, independent t-test, Mann-Whitney U test, Chi-squared test, Fisher's exact test, receiver operating characteristics (ROC) with the area under the curve (AUC), DeLong's test, and Spearman rank correlation test with the P-value significance level of 0.05. Ktrans and ER of MCA culprit plaques were significantly higher in AIS than non-AIS patients (Ktrans = 0.098 s-1 vs. 0.037 s-1; ER = 0.86 vs. 0.55). Ktrans showed better AUC for distinguishing AIS from non-AIS patients (0.87 vs. 0.75) and stronger negative correlation with stroke time than ER (r = -0.60 vs. -0.34). DM patients had significantly higher Ktrans and ER than non-DM patients in IS and AIS groups. Imaging by CDT DCE-MRI may allow to quantitatively evaluate MCA culprit plaques over stroke time and DM. 2 TECHNICAL EFFICACY: Stage 2.