Bladder cancer (BC) is a very common malignant tumor in the urinary system. However, the incidence rate, recurrence rate, progression rate and metastasis rate of bladder cancer are still very high, leading to poor long-term prognosis of patients. This study was to investigate the expression of transferrin receptor/TFRC protein in bladder cancer tissue and its role in inducing iron death of T24 human bladder cancer cells. Based on the intersection of 259 FerrDb genes in the iron death database with GSE13507 and GSE13167 data sets, 54 genes related to iron death in bladder cancer were obtained. Analyzing 54 genes, KEGG enrichment analysis showed that the pathways involved were mainly focused on iron death, autophagy, and tumor center carbon metabolism. GO analysis found that the molecular functions mainly gather in ubiquitin like protein ligase binding, ubiquitin protein ligase binding, and antioxidant activity. In the cellular components, it is mainly distributed in pigment granules, melanosomes, and the basal lateral plasma membrane. In biological processes, it is enriched in nutrient level responses, responses to extracellular stimuli, and cellular redox homeostasis. Screen out the top 10 core genes. The 10 core genes are SLC2A1, TFRC, EGFR, KRAS, CAV1, HSPA5, NFE2L2, VEGFA, PIK3CA, and HRAS. Finally, TFRC was selected as the research object. TCGA analysis showed that the expression level in bladder cancer tissue was higher than that in normal tissue, and the difference was statistically significant (P < 0.001). Conclusion (1) TFRC is highly expressed in many kinds of tumors, and it is more highly expressed in bladder cancer than in normal bladder tissue. (2) TFRC has certain diagnostic and prognostic value in bladder cancer. (3) Erastin, an iron death inducer, induced the iron death of T24 human bladder cancer cells, knocked down the expression of TFRC in T24 human bladder cancer cells, and preliminarily verified that silencing TFRC could inhibit the iron death of T24 human bladder cancer cells.