This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) to differentiate between tuberculous spondylitis (TS) and pyogenic spondylitis (PS) using contrast-enhanced MRI (CE-MRI). A retrospective approach was employed, enrolling patients diagnosed with TS or PS based on pathological examination at two centers. Clinical features were evaluated to establish a clinical model. Radiomics and deep learning (DL) features were extracted from contrast-enhanced T1-weighted images and subsequently fused. Following feature selection, radiomics, DL, combined DL-radiomics (DLR), and a deep learning radiomics nomogram (DLRN) were developed to differentiate TS from PS. Performance was assessed using metrics including the area under the curve (AUC), calibration curves, and decision curve analysis (DCA). A total of 147 patients met the study criteria. Center 1 comprised the training cohort with 102 patients (52 TS and 50 PS), while Center 2 served as the external test cohort with 45 patients (17 TS and 28 PS). The DLRN model exhibited the highest diagnostic accuracy, achieving an AUC of 0.994 (95% CI: 0.983-1.000) in the training cohort and 0.859 (95% CI: 0.744-0.975) in the external test cohort. Calibration curves indicated good agreement for DLRN, and decision curve analysis (DCA) demonstrated it provided the greatest clinical benefit. The CE-MRI-based DLRN showed robust diagnostic capability for distinguishing between TS and PS in clinical practice.
Read full abstract