Background: Stroke may produce functional and electrical heart disturbances. The underlying characteristics and mechanisms have not been fully elucidated. Objectives: To evaluate whether acute cerebral ischemia (I) and reperfusion (R) may cause cardiac dysfunction and electrocardiographic alterations in an experimental mice model. Methods: Male mice that underwent cerebral ischemia and reperfusion (I/R) were evaluated by electrocardiography (ECG) and echocardiography. Heart rate, corrected QT (QTc) interval, T-wave peak to T-wave end (Tp-Te) interval, left ventricular ejection fraction (LVEF), shortening fraction (SF) and isovolumetric relaxation time (IVRT) were analyzed. Cerebral infarct size was calculated, and neurological deficit was assessed with the Longa scale. Results: Twenty-four hours after R, a statistically significant decrease in LVEF (I/R: 66.5±1.5% vs. sham: 74.3±0.9%; p=0.002) and in SF (I/R: 42.9±1.7% vs sham: 52.3±1.7%; p=0.004) was observed. QTc interval prolongation was observed during I/R (baseline: 125.1±4.3 ms; 60 min after I: 143.8±5.2 ms; 24 h after R: 170.3±5.8 ms; p=0.002). Tp-Te interval was not prolonged during I (baseline: 25.9±1.3 ms vs. 60 min after I: 23.8±1.4 ms; p=0.999) but it was prolonged during R (24 h after R: 32.0±2.3 ms; p=0.049). Cerebral infarct size was 34.9±2.5% and survival in the I/R group was 43.3%. Conclusion: Acute cerebral ischemia induces mild left ventricular dysfunction and disturbances in ventricular repolarization which intensify within the first 24 hours after reperfusion.